Center Innovation Fund: ARC CIF

Development of a Lightweight Mobility System for a Passive Tensegrity Lander

Completed Technology Project (2017 - 2018)

Project Introduction

We will provide actuation for JPL's light-weight and robust passive tensegrity lander, and develop simplified actuation based on either traction motors or payload-based actuation for JPL lander. We will develop minimal actuation topology and control using NTRT (NASA Tensegrity Robotics Toolkit), and evaluate how each actuation pattern performs based on the pattern's weight, size, control complexity, and achievable positioning from random initial orientations. We would then propose further development and funding through either the NASA Innovative Advanced Concepts program (NIAC), or by incorporating into a multi-year Game Changing Development (GCD) program that we hope to start up in FY18.

Anticipated Benefits

Design will allow light-weight, low-cost and robust tensegrity robots to be considered for future NASA missions

Primary U.S. Work Locations and Key Partners

Development of a Lightweight Mobility System for a Passive Tensegrity Lander

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Project Website:	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations	3	

Center Innovation Fund: ARC CIF

Development of a Lightweight Mobility System for a Passive Tensegrity Lander

Completed Technology Project (2017 - 2018)

Organizations Performing Work	Role	Туре	Location
Ames Research Center(ARC)	Lead	NASA	Moffett Field,
	Organization	Center	California
Jet Propulsion Laboratory(JPL)	Supporting	NASA	Pasadena,
	Organization	Center	California

Primary U.S. Work Locations

California

Project Transitions

0

October 2017: Project Start

September 2018: Closed out

Closeout Summary: Successfully developed tensegrity robot with collapsable s truts.

Project Website:

https://www.nasa.gov/directorates/spacetech/innovation_fund/index.html#.VC

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Ames Research Center (ARC)

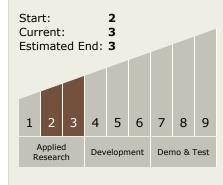
Responsible Program:

Center Innovation Fund: ARC CIF

Project Management

Program Director:

Michael R Lapointe


Program Manager:

Harry Partridge

Principal Investigator:

Adrian K Agogino

Technology Maturity (TRL)

Center Innovation Fund: ARC CIF

Development of a Lightweight Mobility System for a Passive Tensegrity Lander

Completed Technology Project (2017 - 2018)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - □ TX06.2 Extravehicular Activity Systems
 - □ TX06.2.3 Informatics and Decision Support Systems
 ☐

Target Destinations

Earth, Mars, Others Inside the Solar System

